| Home | Trees | Index | Help |
|---|
|
numdifftools: Suite of tools to solve automatic numerical differentiation problems
in one or more variables.
__builtin__.object:
The most base type
__builtin__.type:
type(object) -> the object's type type(name, bases, dict) -> a
new type
numdifftools.core.Common_diff_par:
Object holding common variables and methods for the numdifftools
Input arguments
===============
fun = function to differentiate.
numdifftools.core.Derivative:
Estimate n'th derivative of fun at x0, with error estimate
Input arguments
===============
fun = function to differentiate.
numdifftools.core.Gradient:
Estimate gradient of fun at x0, with error estimate
Input arguments
===============
fun = function to differentiate.
numdifftools.core.Hessdiag:
Estimate diagonal elements of Hessian of fun at x0, with error estimate
Input arguments
===============
fun = function to differentiate.
numdifftools.core.Hessian:
Estimate Hessian matrix, with error estimate
Input arguments
===============
fun = function to differentiate.
numdifftools.core.Jacobian:
Estimate Jacobian matrix, with error estimate
Input arguments
===============
fun = function to differentiate.
| Home | Trees | Index | Help |
|---|
| Generated by Epydoc 2.0 on Sat Nov 22 02:00:54 2008 | http://epydoc.sf.net |